Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: a computer simulation study.

نویسندگان

  • A P Henriquez
  • R Vogel
  • B J Muller-Borer
  • C S Henriquez
  • R Weingart
  • W E Cascio
چکیده

The gap junction connecting cardiac myocytes is voltage and time dependent. This simulation study investigated the effects of dynamic gap junctions on both the shape and conduction velocity of a propagating action potential. The dynamic gap junction model is based on that described by Vogel and Weingart (J. Physiol. (Lond.). 1998, 510:177-189) for the voltage- and time-dependent conductance changes measured in cell pairs. The model assumes that the conductive gap junction channels have four conformational states. The gap junction model was used to couple 300 cells in a linear strand with membrane dynamics of the cells defined by the Luo-Rudy I model. The results show that, when the cells are tightly coupled (6700 channels), little change occurs in the gap junction resistance during propagation. Thus, for tight coupling, there are negligible differences in the waveshape and propagation velocity when comparing the dynamic and static gap junction representations. For poor coupling (85 channels), the gap junction resistance increases 33 MOmega during propagation. This transient change in resistance resulted in increased transjunctional conduction delays, changes in action potential upstroke, and block of conduction at a lower junction resting resistance relative to a static gap junction model. The results suggest that the dynamics of the gap junction enhance cellular decoupling as a possible protective mechanism of isolating injured cells from their neighbors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Different Mechanisms of Action Potential Propagation in the Heart

It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...

متن کامل

The Different Mechanisms of Action Potential Propagation in the Heart

It was thought previously that cardiac muscle gap junctions provide low-resistance connections between cells and permit the local-circuit current to flow. Some evidences show that myocardial cells may not require low-resistance connections for successful propagation of the action potential (AP). It seems that some other types of mechanisms must be involved in AP propagation. In this article, we...

متن کامل

Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts.

BACKGROUND Gap junctions are a determinant of myocardial conduction. Disturbances of gap-junctional content may account for abnormalities of impulse propagation, contributing to the arrhythmic tendency and mechanical inefficiency of ischemic and hypertrophied myocardium. The aim of this study was to characterize gap junction organization in normal human ventricular myocardium and to establish w...

متن کامل

Effect of gap junction distribution on impulse propagation in a monolayer of myocytes: a model study.

AIMS To use microstructural computer models to study how four features of myocardial architecture affect propagation: brick wall tissue structures, jutting at cell ends, gap junction distribution and conductance along cell borders, and increased structural discontinuity. METHODS AND RESULTS Simulations of longitudinal and transverse plane wave propagation and point propagation were performed ...

متن کامل

Impulse propagation in synthetic strands of neonatal cardiac myocytes with genetically reduced levels of connexin43.

Connexin43 (Cx43) is a major determinant of the electrical properties of the myocardium. Closure of gap junctions causes rapid slowing of propagation velocity (theta), but the precise effect of a reduction in Cx43 levels due to genetic manipulation has only partially been clarified. In this study, morphological and electrical properties of synthetic strands of cultured neonatal ventricular myoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 81 4  شماره 

صفحات  -

تاریخ انتشار 2001